Posted on Leave a comment

Why NORVI ESP32-based HMI for your innovative project or a system?

NORVI ESP32-based HMI

Do you know NORVI has a new addition? Here is why you should choose it. NORVI ESP32-based HMI solution is now available to buy, explore more now. 

Introducing the groundbreaking NORVI ESP32-based HMI (Human Machine Interface), a marvel in the realm of Programmable HMI supported with LVGL (Light and Versatile Graphics Library). This innovative system redefines interaction dynamics by bestowing users with an immersive graphical environment, seamlessly melding technology and user experience. Crafted to be programmed with Arduino, this HMI stands as a pinnacle of versatility, providing an influential platform for the inception of intuitive user interfaces while harnessing the potent capabilities of ESP32 microcontrollers.

The fusion of NORVI’s prowess with LVGL technology is a game-changer, empowering creators to sculpt visually captivating, responsive, and feature-rich interfaces. This amalgamation of cutting-edge features positions it as the go-to solution across diverse applications clamoring for user-friendly interactions. From IoT devices to automation systems and beyond, the NORVI ESP32-based HMI emerges as the quintessential choice for those seeking an unprecedented blend of innovation, functionality, and aesthetics in their projects.

See the diagram and explanations below for how an ESP32-based HMI is developed, as well as its benefits and features

Key Advantages of NORVI ESP32- based HMI

The NORVI ESP32-based HMI boasts several key advantages that set it apart as a game-changer in the realm of Human Machine Interfaces:

  • ESP32-S3-WROOM32 Module: At its core lies the powerful ESP32-WROOM32 module, renowned for its robust performance and versatility. This module serves as the foundation, providing the HMI with a potent processing engine, ample memory, and efficient wireless connectivity capabilities. This is from Espressif Systems and it has the following advantages.
  • High-performance processing capabilities
  • Dual-core microcontroller architecture
  • Ample built-in memory and storage options
  • Integrated Wi-Fi and Bluetooth connectivity
  • Low power consumption and energy-efficient operation
  • Support for various interfaces such as SPI, I2C, UART, and more
  • Rich set of peripherals and features for versatile applications
  • LVGL Support Display: The integration of LVGL (Light and Versatile Graphics Library) support elevates the user interface experience to new heights. This advanced feature empowers creators to design visually stunning, responsive, and feature-rich graphical interfaces, enhancing user interaction and engagement and many advantages as below.
  • Enables creation of visually appealing and rich graphical user interfaces (GUIs)
  • Offers responsive and smooth interaction for users
  • Provides a wide range of customizable widgets and graphics
  • Supports animations and transitions for enhanced user experience
  • Compatibility with various display sizes and resolutions
  • Optimized for resource-efficient performance on embedded systems
  • PLC Functionality with Arduino: The HMI’s compatibility and integration with Arduino enable it to function as a Programmable Logic Controller (PLC). This extends its utility beyond a mere display interface, allowing it to control and manage various processes and systems, making it an all-encompassing solution for automation and control applications its key advantages are as below.
  • Versatile control and management capabilities for various processes and systems.
  • Integration of human-machine interaction with control logic, enhancing usability.
  • Flexibility in programming and customization for specific automation needs.
  • Expanded functionalities beyond traditional HMI interfaces.
  • Seamless communication between the user interface and control systems.
  • Utilizes widely supported Arduino ecosystem for easy development and scalability.

Features-based Applications

By leveraging the ESP32-WROOM32 module, harnessing LVGL’s display capabilities, and incorporating PLC functionality through Arduino compatibility, the NORVI ESP32-based HMI emerges as a comprehensive, adaptable, and high-performance solution for a wide spectrum of applications, promising unparalleled versatility and functionality. Also, it introduces a robust 5-inch LCD Display with Resistive Touch, boasting a suite of features tailored for diverse industrial applications:

  • 5-inch LCD Display with Resistive Touch: Offers a crisp and clear display, enhancing user interaction and visual clarity in various industrial environments.
  • Built-in Buzzer: Equipped with a built-in buzzer for audio alerts or notifications, facilitating immediate and audible feedback for critical processes or events.
  • Digital Inputs: Provides digital input ports for seamless integration and connectivity with external devices or sensors, enabling versatile data acquisition and control.
  • Analog Inputs: Includes analog input capabilities, allowing precise measurement and monitoring of varying voltage levels or sensor outputs, crucial for nuanced control and analysis.
  • Transistor Outputs: Features transistor outputs that facilitate control over external devices or systems, offering flexibility and adaptability in managing industrial processes.
  • Supports Industrial Voltage up to 24V DC: Designed to handle industrial-grade voltages up to 24V DC, ensuring compatibility with standard industrial power systems and environments.

Visit our product page for more information: NORVI HMI

Industrial Applications

The ESP32-based HMI with LVGL support and Arduino functionality excels in these industrial applications by providing a powerful platform for creating intuitive and feature-rich user interfaces while leveraging the capabilities of ESP32 microcontrollers. Its versatility, robustness, and ease of integration make it a valuable asset across various industrial settings as below.

  • Manufacturing Automation: Employed in manufacturing processes for control interfaces, monitoring production lines, and managing machinery with intuitive and responsive user interfaces.
  • Building Automation: Used in building management systems to control lighting, HVAC systems, security features, and access controls with user-friendly interfaces.
  • Industrial IoT (IIoT) Solutions: Integrated into IIoT systems for data visualization, remote monitoring, and controlling industrial equipment and machinery.
  • Process Control and Instrumentation: Utilized in industries such as chemical, pharmaceuticals, and food processing for real-time monitoring, controlling parameters, and managing processes.
  • Energy Management: Applied in energy production facilities, smart grids, and renewable energy systems for monitoring and controlling power generation, distribution, and consumption.
  • Smart Agriculture: Used in precision agriculture for monitoring environmental conditions, controlling irrigation systems, and managing farm machinery.
  • Transportation and Logistics: Employed in smart warehouses and logistics systems for inventory management, tracking goods, and controlling conveyor systems.
  • Water Management: Utilized water treatment plants and distribution systems for monitoring water quality, managing pumps and valves, and automating processes.
  • Healthcare Equipment: Integrated into medical devices and healthcare equipment for user interfaces, patient monitoring, and controlling automated systems.
  • Robotics and Automation: Applied in robotics for creating interactive control panels, monitoring robotic systems, and managing automation processes.

NORVI ESP32-based HMI Models

There are two models available in ESP32-based HMI now to buy!

ESP-HMI-5C-CI

ESP-HMI-5C-VI

  • ESP32-WROOM32 Module
  • Built-in 5Inch LCD Display with Resistive Touch
  • Built-in Buzzer
  • Built-in microSD Card support
  • LVGL Supported Display
  • DS3231 RTC with battery backup
  • PLC functionality with Arduino

Inputs and Outputs

  • 4 x Digital Inputs 24V
  • 4 x 4 – 20mA Analog Inputs
  • 4 x Transistor Outputs

Communication

  • 2.4Ghz WiFi + Bluetooth
  • W5500 Ethernet
  • RS-485




  • ESP32-WROOM32 Module
  • Built-in 5Inch LCD Display with Resistive Touch
  • Built-in Buzzer
  • Built-in microSD Card support
  • LVGL Supported Display
  • DS3231 RTC with battery backup
  • PLC functionality with Arduino

Inputs and Outputs

  • 4 x Digital Inputs 24V
  • 4 x 0 – 10A Analog Inputs
  • 4 x Transistor Outputs

Communication

  • 2.4Ghz WiFi + Bluetooth
  • W5500 Ethernet
  • RS-485


Additionally, if there are any specific technical specifications, compatibility details, or customization options available for this ESP32-based HMI, make an inquiry to us at [email protected]

Begin your journey into exploring the endless possibilities that the NORVI ESP32-based HMI offers for your project or innovative system. Your adventure starts with us today. Purchase Now! 

#NORVI #ESP32 #LVGL #HMI #HumanMachineInterface #Arduino #IndustrialAutomation #IoT #PLC #UserInterface #ESP32WROOM32 #IndustrialControl #LVGLSupport #InnovationInTech #AutomationSolutions #EmbeddedSystems #TechnologyIntegration #SmartTech #IndustrialApplications #HMIsolutions #LVGLdisplay #arduino #ArduinoHMI #IndustrialHMI #HMItechnology #UserFriendlyInterface #IoTApplications #AutomationControl #SmartHMI #TouchScreenDisplay #esp #esp32 #esp32project #esp32wroom #Technology #IntuitiveUserInterfaces #Industries #hmisolutions #hmiprojects #HMIDesign #EmbeddedSystems #UserInterface #HMIProgramming #TouchscreenTech #SmartDevices #Electronics #DIYElectronics #Arduino #TechInnovation #WirelessCommunication #InternetOfThings #MakerCommunity #Engineering #Innovation #HMIControl #OpenSourceHardware #microcontrollers#HMIApplications #EmbeddedHMI #ControlSystems #DigitalInterface #InnovativeHMI #ESP32Technology #LVGLSupport #HumanMachineInteraction #HMIdevelopment #BuyESP32HMI #BuyNow



Posted on Leave a comment

Why ESP32-based HMI for Your Innovative IoT and Smart Applications

Why ESP32-based HMI for Your Innovative IoT and Smart Applications

The ESP32, a powerful microcontroller with integrated Wi-Fi and Bluetooth capabilities, is increasingly gaining prominence as an ideal choice for Human-Machine Interface (HMI) systems in IoT and smart applications. Its relevance stems from its dual-core processor, low power consumption, rich set of peripherals, and ample processing power, making it well-suited for HMI applications. This article explores the key features, integration, advantages, and applications of ESP32 in HMI systems, along with potential challenges and future trends in ESP32-based HMI technology.

ESP32 microcontroller board

What is ESP32 and its relevance to Human-Machine Interface (HMI)?

The ESP32, known for its integrated Wi-Fi and Bluetooth capabilities, is a robust microcontroller that is well-suited for IoT and smart applications. Its dual-core processor and ample resources enable it to handle complex tasks, making it a preferred choice for HMI systems, acting as the bridge between the user and the machine in various applications.

Key features of ESP32 for HMI applications

The ESP32’s key features, including its dual-core architecture, low power consumption, rich set of peripherals, and ample processing power, make it an excellent choice for HMI applications. Its integrated Wi-Fi and Bluetooth capabilities allow for wireless communication, while its robust processing capabilities enable the implementation of responsive and feature-rich user interfaces.

Smart home automation system controlled by ESP32-based HMI

Applications of ESP32 in HMI systems

The versatility and reliability of the ESP32 make it a preferred choice for enabling intuitive and interactive user experiences in various HMI applications across domains such as home automation, industrial control, and smart environments.

Understanding HMI

Definition and significance of HMI in technology and industrial automation

HMI, or Human-Machine Interface, plays a crucial role in enabling users to monitor, control, and interact with various devices and systems in technology and industrial automation, encompassing the hardware and software components that facilitate intuitive and efficient communication between humans and machines.

Importance of ESP32 in enhancing the functionality of HMI systems

The integration of ESP32 in HMI systems enhances functionality by providing a robust platform for developing interactive and user-friendly interfaces, empowering developers to create compelling HMI solutions that offer seamless control and monitoring capabilities.

Integration of ESP32 with HMI

Process and considerations for integrating ESP32 with HMI systems

Integrating ESP32 with HMI systems involves identifying specific application requirements, selecting suitable display and input devices, and leveraging the ESP32’s capabilities to enable seamless communication and interaction, considering aspects such as data exchange protocols, user input methods, and real-time responsiveness.

Advantages and unique capabilities of ESP32 for HMI solutions

The ESP32 offers distinct advantages for HMI solutions, including its support for various communication protocols, rich peripheral integration, and the ability to handle complex tasks without compromising performance, making it suitable for developing feature-rich and visually appealing HMI systems.

User interface design mockup for an ESP32-based HMI

Designing an ESP32-Based HMI

Hardware components and requirements for designing an HMI using ESP32

Designing an HMI using ESP32 requires the selection of appropriate display modules, input devices, and peripheral components to complement the microcontroller’s capabilities, including touchscreen displays, physical buttons, and sensors for versatile user interaction.

Programming techniques for ESP32 in HMI applications

Programming the ESP32 for HMI applications involves utilizing platforms such as Arduino IDE or ESP-IDF to develop interactive user interfaces, implement communication protocols, and integrate sensor data for real-time feedback, leveraging the ESP32’s dual-core architecture for efficient multitasking and responsive user experiences.

User interface design considerations for ESP32-based HMI systems

Effective user interface design for ESP32-based HMI systems involves creating intuitive layouts, employing visual feedback for user actions, and optimizing the use of graphical elements to enhance usability, considering factors such as color schemes, font sizes, and interactive elements.

Applications of ESP32-Based HMI

Home automation and smart device control

ESP32-based HMI systems find extensive applications in home automation, enabling users to remotely control lighting, HVAC systems, security cameras, and other smart devices, enhancing user convenience and enabling seamless integration of diverse smart home components.

Industrial control, monitoring, and automation

In industrial settings, ESP32-based HMI solutions empower operators to monitor and control complex machinery, temperature and humidity sensors, and other critical parameters, contributing to enhanced operational efficiency and safety.

IoT devices and integration in smart environments

The ESP32’s compatibility with IoT devices and its ability to connect to cloud services make it an ideal choice for integrating IoT devices in smart environments, enabling seamless integration and control of diverse IoT devices.

Real-life examples of successful ESP32-based HMI implementations

Real-life examples of successful ESP32-based HMI implementations include smart home control panels, industrial monitoring and control systems, and IoT-enabled environmental monitoring solutions, showcasing the versatility and reliability of ESP32 in diverse applications.

A women  wanted to upgrade her home with smart devices for convenience and energy efficiency. She decided to implement an ESP32-based HMI system to control and monitor various aspects of her home, such as lighting, temperature, and security.

Streamlined Control and Monitoring

With the ESP32-based HMI, it was able to create a user-friendly interface to seamlessly control her smart devices from a single dashboard. Whether she was at home or away, she could easily adjust the thermostat, turn lights on and off, and receive security alerts, providing her with peace of mind and saving energy when rooms were unoccupied.

Seamless Integration and Customization

It also appreciated the ease of integrating new IoT devices into her smart home system. The ESP32’s flexibility and compatibility allowed her to customize the interface according to her preferences, creating a personalized and intuitive control center for her home automation.

The ESP32-based HMI not only enhanced the functionality of smart home but also showcased the adaptability and practicality of ESP32 in real-life applications, demonstrating its effectiveness in home automation and smart device control.

Effectiveness and adaptability of ESP32-based HMI in diverse scenarios and industries

The effectiveness and adaptability of ESP32-based HMI in diverse scenarios and industries underscore its ability to cater to varying requirements, from consumer-facing smart devices to industrial automation and monitoring applications, showcasing its flexibility and robust feature set.

Advantages and Challenges

Advantages and benefits of utilizing ESP32 for HMI solutions

Utilizing ESP32 for HMI solutions offers advantages such as wireless connectivity, robust processing power, and support for rich graphical interfaces, contributing to its appeal for diverse HMI applications.

Addressing potential challenges and limitations in ESP32-based HMI implementation

Challenges in ESP32-based HMI implementation may include optimizing power consumption for battery-operated devices, ensuring secure communication, and addressing compatibility issues with external components, requiring careful consideration for successful implementation.

Conceptual illustration of potential future advancements in ESP32-based HMI technology

Future Trends

Advancements and emerging trends in ESP32-based HMI technology

Future advancements in ESP32-based HMI technology may encompass enhanced integration with AI and machine learning algorithms, optimization for low-power applications, and expanded support for advanced graphical interfaces and touch technologies.

Potential innovations and improvements on the horizon for ESP32 in HMI systems

Innovations on the horizon for ESP32 in HMI systems may include enhanced security features, expanded wireless connectivity options, and advancements in real-time data processing capabilities, paving the way for more sophisticated and responsive HMI solutions.

Best Practices and Tips

Effective implementation strategies for ESP32-based HMI solutions

Effective implementation of ESP32-based HMI solutions involves thorough planning, consideration of power management strategies, and adherence to best practices in user interface design and communication protocols, along with rigorous testing and optimization.

Ensuring optimal performance, security, and user experience in ESP32-based HMI applications

To ensure optimal performance, security, and user experience in ESP32-based HMI applications, developers should prioritize efficient code optimization, implement secure communication protocols, and focus on creating intuitive and responsive user interfaces catering to specific user needs.

Conclusion

The ESP32’s integration in HMI systems offers a compelling combination of robust processing power, wireless connectivity, and support for feature-rich user interfaces, demonstrating its versatility and relevance in diverse domains such as home automation, industrial control, and IoT integration.

The evolution of ESP32-based HMI systems is poised to witness advancements in AI integration, enhanced security features, and expanded support for sophisticated user interfaces, paving the way for more immersive and intelligent human-machine interactions in IoT and smart applications.

In conclusion, the ESP32’s capabilities position it as a key enabler for the next generation of HMI solutions, offering a potent combination of performance, versatility, and reliability for diverse applications in IoT and smart technologies.

For more detailed examples and technical information, let’s explore specific case studies and in-depth technical insights into the challenges and optimization techniques encountered in ESP32-based HMI implementations. 

NORVI is about to launch its newly produced, ESP32-based HMI. Wait with us! 

Wanna know more about HMI from NORVI? Read below,

The Rise of HMI Applications: Ultimate Tech Landscape

Thriving HMI Technology: Future of Human-Machine Interface

Optimizing HMI Projects for Industrial Automation Success

#Norvi #esp #esp32 #esp32project #esp32wroom #HMI #HumanMachineInterface #Technology #IntuitiveUserInterfaces #Industries #hmisolutions #hmiprojects #HMIDesign #IoT #EmbeddedSystems #UserInterface #HMIProgramming #TouchscreenTech #SmartDevices #Electronics #DIYElectronics #Arduino #TechInnovation #WirelessCommunication #InternetOfThings #MakerCommunity #Engineering #Innovation #HMIControl #OpenSourceHardware #Microcontrollers

Posted on Leave a comment

Thriving HMI Technology: Future of Human-Machine Interface

HMI Technology - Future of Human-Machine Interface

What is HMI? In today’s rapidly advancing technological landscape, the concept of Human-Machine Interface (HMI) has emerged as a critical component. HMI refers to the system or interface that allows humans to interact with machines or software. It plays a pivotal role in various industries, enabling seamless communication and collaboration between humans and technology. To fully comprehend the significance of HMI, it is essential to explore its definition and understand its implications across different fields.

What is HMI and its significance in the technology field?

  • HMI is a system or interface that allows humans to interact with machines or software.
  • Understanding HMI is important in various industries as it enables seamless interaction and communication between humans and machines, improving efficiency, productivity, and user experience.

Defining HMI

HMI can be defined as the means by which humans interact with machines, devices, or software. It encompasses the design, layout, and functionality of user interfaces that facilitate communication between humans and technology. An intuitive and user-friendly HMI is crucial in ensuring effective and efficient interaction. By providing users with a clear and understandable interface, HMI simplifies complex tasks and enhances user experience.

The Purpose of HMI

At its core, HMI aims to enable seamless interaction and communication between humans and machines. By providing intuitive and user-friendly interfaces, HMI systems enhance efficiency, productivity, and user experience across various industries. In manufacturing, for example, HMI enables operators to monitor and control complex production processes, leading to improved productivity and reduced downtime. In the healthcare industry, HMI facilitates the operation of medical devices, ensuring accurate and timely patient care.

What are the components of HMI?

  • Essential components of HMI include display screens, touch panels, keyboards, buttons, and other input/output devices.
  • Sensors, actuators, and controllers also play a role in HMI systems.

The components of HMI are diverse and encompass various elements that enable interaction between humans and machines. These include display screens, touch panels, keyboards, buttons, and other input/output devices. Display screens play a vital role in presenting information to users, while touch panels enable tactile interaction. Keyboards and buttons allow users to input commands and navigate through interfaces. Additionally, sensors, actuators, and controllers are integral to HMI systems, as they facilitate the transfer of information between humans and machines.

Types of HMI

HMI encompasses various types of interfaces, each with its own advantages and limitations. 

  • Touchscreen Interfaces
  • Resistive Touchscreens
  • Capacitive Touchscreens
  • Voice-Activated Interfaces
  • Gesture-Based Interfaces
  • Brain-Computer Interfaces

One common type is the Graphical User Interface (GUI), which utilizes visual elements such as icons, buttons, and menus to enable interaction. GUIs are prevalent in desktop and mobile applications, providing users with a familiar and intuitive interface. Voice recognition interfaces have also gained popularity, allowing users to interact with devices through speech commands. Gesture-based interfaces, on the other hand, utilize body movements and gestures to control devices. Virtual reality interfaces create immersive experiences, enabling users to interact with virtual environments.

Applications of HMI

HMI finds applications in a wide range of industries, revolutionizing processes and enhancing user experience. In the manufacturing sector, HMI systems play a crucial role in automation and control, enabling operators to monitor and manage production lines. The automotive industry utilizes HMI in vehicles, providing drivers with intuitive interfaces for navigation and entertainment systems. In the aerospace sector, HMI is used in cockpit displays, empowering pilots with crucial information during flights. The healthcare industry benefits from HMI in medical devices, improving patient monitoring and diagnostics. Consumer electronics, such as smartphones and smart home devices, also incorporate HMI to provide users with seamless and intuitive interfaces.

Challenges and Future Trends in HMI

Designing effective HMI systems presents several challenges. One key challenge is managing the complexity of interfaces while maintaining ease of use. HMI systems must strike a balance between providing users with sufficient functionality and avoiding overwhelming them with excessive options. Usability is another crucial aspect, as HMI should cater to a diverse range of users with varying levels of technical proficiency. Additionally, understanding user preferences and incorporating them into HMI design is essential for creating interfaces that resonate with users.

Looking ahead, several future trends are expected to shape the field of HMI. Augmented Reality (AR) holds great potential, allowing users to interact with virtual elements overlaid on the real world. Natural Language Processing (NLP) enables machines to understand and respond to human language, revolutionizing voice recognition interfaces. Machine learning algorithms can enhance HMI by analyzing user behavior and adapting interfaces to individual preferences.

Importance of User-Centered Design in HMI

User-centered design principles play a pivotal role in creating intuitive and user-friendly HMI systems. By prioritizing the needs and preferences of users, designers can ensure interfaces that are intuitive, efficient, and enjoyable to use. User research, usability testing, and iterative design processes are crucial in understanding user expectations and refining HMI interfaces. By involving users throughout the design process, HMI systems can be tailored to meet their specific requirements, ultimately leading to greater user satisfaction and adoption.

Conclusion

In conclusion, the field of Human-Machine Interface (HMI) is revolutionizing the way humans interact with technology. By enabling seamless communication and collaboration between humans and machines, HMI enhances efficiency, productivity, and user experience across various industries. Understanding the components and purpose of HMI, as well as the challenges and future trends, is crucial in harnessing its full potential. With user-centered design principles and powerful HMI platforms, the future holds exciting possibilities for the advancement and application of HMI in diverse fields.

Wait for more exciting news from NORVI, till connect with us:

Facebook : LinkedIn : Twitter

#HMI #HumanMachineInterface #Technology #IntuitiveUserInterfaces #Industries #hmisolutions

Posted on

NORVI HMI Solution for Innovative IoT Projects

NORVI HMI Solution

NORVI HMI is around the corner. What is it?

Human-Machine Interfaces (HMIs) stand as indispensable conduits bridging the gap between humans and machines, encompassing an extensive spectrum of applications spanning across industrial process control, energy management, transportation, healthcare, consumer devices, smart homes, retail, defense, education, telecommunications, research, and public infrastructure management. These interfaces continually evolve, constantly refining user experiences and control mechanisms across diverse sectors and technological landscapes.

Enter the NORVI HMI, an ESP32-based interface redefining user interaction. Boasting a 5-inch display coupled with resistive touch capabilities, integrated digital inputs, and transistor outputs, the NORVI HMI stands out among its peers. Its distinguishing features include a state-of-the-art 5-inch LVGL 8 display, seamless ESP32 S3 integration, an in-built buzzer for enhanced interactivity, and an extensive array of I/O options, rendering it a versatile and comprehensive solution.

This article aims to delve deep into the exceptional features defining the NORVI HMI while also conducting an insightful comparative analysis with alternative display solutions prevalent in the market.

Serial-driven displays, a popular choice within the realm of HMIs, garner acclaim for their intuitive interface creation capabilities and compatibility with microcontrollers such as the ESP32. These displays establish communication with microcontrollers through serial communication protocols, paving the way for seamless integration and operation.

A fundamental disparity distinguishing these two Human-Machine Interface (HMI) solutions pertains to their microcontroller intricacies and processing methodologies. In the case of the Serial HMI display, its reliance on external microcontrollers necessitates communication through designated serial channels. In stark contrast, the ESP32-based NORVI HMI features an integrated ESP32 module, uniquely equipped to fulfill both UI functionalities and communication requisites seamlessly. This holistic integration endows the NORVI HMI with a dual advantage: it presents a cost-effective solution while elevating performance metrics beyond those achievable by the Serial HMI display.

The NORVI HMI operates on the ESP32-S3 microcontroller, a powerhouse boasting an impressive array of 45 physical GPIO pins. Within this framework, 20 GPIO pins are dedicated to handling display functionalities, leaving the majority of the remaining pins available for an assorted array of critical functions. These encompass an extensive spectrum, encompassing digital inputs, transistor outputs, and facilitating crucial communication protocols, amplifying the HMI’s flexibility and adaptability within diverse operational settings.

NORVI HMI Pin Configuration

Features of NORVI HMI

  • 5-inch LCD Display with Resistive Touch: NORVI HMI offers a crystal-clear 5-inch LCD display with resistive touch technology, ensuring a user-friendly and interactive experience.
  • ESP32 S3 Integration: At its core, NORVI HMI harnesses the power of the ESP32 S3 module. This integration provides seamless communication capabilities and robust performance, making it a versatile choice for various applications.
  • Built-in Buzzer: NORVI HMI includes a built-in buzzer, allowing for auditory alerts, notifications, and user feedback, enhancing the user experience.
  • Ethernet (Optional) / Hardware: NORVI HMI gives you the option of Ethernet connectivity, making it possible to connect to networks and control devices remotely. The built-in hardware support ensures flexibility in connectivity.
  • I/O Options: NORVI HMI boasts a range of I/O options, including:
  • RS-485 Full Duplex
  • Digital Inputs x 4
  • Analog Inputs x 4
  • Transistor Outputs x 4

Checkout the bench mark test video at https://youtu.be/9Zz_wGJb7Nk

Find out about ESP32 HMI for Innovations